Графическое обозначение элементов электрических схем. Условные графические обозначения в электрических схемах

— простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (р-п-переход ). Как известно, основное свойство р-n-перехода — односторонняя проводимость: от области р (анод) к области п (катод). Это наглядно передает и условное графическое обрзначение полупроводникового диода : треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 7.1 ).

Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы . Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 7.2 , VD1). Полярность выпрямленного мостом напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 7.2 , VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.

На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон , катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 7.3 , VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения УГО стабилитрона на схеме (VD2—VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).

Аналогично построены условные графические обозначения туннельных диодов , обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 7.3 , VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в УГО диода Шотки (VD10) — в разные стороны; в УГО обращенного диода (VD9) — оба штриха касаются катода своей серединой.

Свойство обратно смещенного р-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах — варикапах (от слов vari(able) — переменный и cap(acitor) — конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 7.3 , VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 7.3 показано УГО матрицы из двух варикапов (VD7).

Базовый символ диода использован и в УГО тиристоров (от греческого thyra — дверь и английского resistor — резистор) — полупроводниковых приборов с тремя р-л-переходами (структура p-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов — VS.

Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 7.4 , VS1). Такой же прием использован и при построении УГО симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами . Управление по катоду в УГО этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4), Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.7.4 , VS5).

Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды . Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним {слева вверху, независимо от положения УГО) помещают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 7.5 , VD1—VD3). Подобным образом строятся УГО любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 7.5 в качестве примера показано условное графическое обозначение фотодинистора VD4.

Аналогично строятся условные графические обозначения светоизлучающих диодов , но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения УГО и направляют в противоположную сторону (рис. 7.6 ). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.
Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 7.6 , где изображено УГО семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита по часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов — HG.

Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.7 .

Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7.7 , U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7.7 , U4.1, U4.2).

Лекция № 4

Полупроводниковые диоды

На рисунке ниже показано условное графическое обозначение полупроводникового диода на принципиальных схемах.

Классификация полупроводниковых диодов

- Выпрямительные диоды;

- Диоды Шоттки;

- Импульсные диоды;

- СВЧ диоды;

- Варикапы;

- Диоды стабилизирующие напряжение (стабилитрон, двуханодный стабилитрон, стабистор);

- Светодиоды;

- Фотодиоды;

- Оптопара (светодиод+фотодиод);

- Тоннельный диод.

Условные графические обозначения диодов разных типов

Принцип работы диода

В основе принципа работы полупроводникового диода лежит p-n переход. Анод соответствует p области перехода, а катод – n области. Про физику работы p-n перехода можно почитать в книге Е.А. Москатова “Электронная техника”. В этой лекции словосочетания диод и p-n переход будут использоваться в качестве синонимов. Каждый p-n переход может работать в качестве диода, но не каждый диод является p-n переходом  Дело в том, что существуют диоды Шоттки, использующие свойства перехода Шоттки (контакт металл-полупроводник).

Если напряжение на аноде больше напряжения на катоде – диод включен в прямом направлении .

Если напряжение на аноде меньше напряжения на катоде – диод включен в обратном направлении.

С увеличением прямого напряжения на диоде, его сопротивление уменьшается, а ток через диод увеличивается. При отсутствии прямого напряжения и тем более при приложении к диоду обратного напряжения (обратного смещения), сопротивление p-n перехода настолько велико, что можно считать его разрывом в цепи. При прямом падении напряжения на диоде равном 0.6-0.7 вольт, сопротивление диода составляет от нескольких десятков до нескольких сотен Ом.

Вышесказанное наглядно подтверждает вольтамперная характеристика полупроводникового диода:

Ток через p-n переход описывается формулой:

где I 0 – ток, вызванный прохождением собственных носителей заряда;

e – основание натурального логарифма;

e’ – заряд электрона;

Т – температура;

U – напряжение, приложенное к p-n переходу;

k – постоянная Больцмана.

–температурный потенциал, при комнатной температуре равный примерно 0,025 В.

Свойства p-n перехода существенно зависят от температуры окружающей среды. При повышении температуры возрастает генерация пар носителей заряда – электронов и дырок, т.е. увеличивается концентрация неосновных носителей и собственная проводимость полупроводника, что, прежде всего, сказывается на изменении обратного тока. При увеличении температуры обратный ток увеличивается примерно в 2 раза при изменении температуры () на каждые 100С у германиевых и на каждые 7,50С у кремниевых диодов.

Максимально допустимое увеличение обратного тока определяет максимально допустимую температуру диода, которая составляет 80 … 100°С для германиевых диодов и 150 … 200°С – для кремниевых.

Минимально допустимая температура диодов лежит в пределах минус (60 … 70) °С.

При достижении некоторой величины обратного напряжения на диоде, сопротивление диода резко уменьшается и ток через диод сильно возрастает. Это явление называется пробоем p-n перехода. Пробой p-n перехода (диода), в свою очередь может быть обратимым и необратимым. Обратимый пробой используется для стабилизации напряжения при помощи стабилитронов.

Важный класс диодов – диоды Шоттки. Падение напряжения на диоде Шоттки в открытом состоянии составляет 0.3 вольта (в отличие от 0.6-0.7 вольт для диода на p-n переходе). Условное графическое обозначение диодов Шоттки на схемах:

Частотные свойства диодов, барьерная емкость

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода: барьерной и диффузионной.

Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью

    Относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единица);

    Электрическая постоянная, численно равная 8,854187817.10 − 12

S p - n – площадь p-n перехода;

Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

Q – суммарный заряд, протекающий через p-n переход.

Эквивалентная схема p-n перехода.

Ri очень мало при прямом включении и будет велико при обратном включении .

Если на p-n переход подавать переменное напряжение, то ёмкостное сопротивление p-n перехода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ёмкостное сопротивление может сравняться с внутренним сопротивлением p-n перехода при прямом включении. В этом случае при обратном включении через эту ёмкость потечёт достаточно большой обратный ток, и p-n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная ёмкость, т. к. диффузионная ёмкость имеет место при прямом включении, когда внутреннее сопротивление p-n перехода мало.

Выпрямительные диоды

Основная задачи диода – выпрямление переменного тока/напряжения выполняется за счет вентильных свойств p-n перехода.

Если вы вспомните, что диод - это проводник, пропускающий ток только в одном направлении, то нетрудно понять, как работает схема выпрямителя. Представленная схема называется однополупериодным выпрямителем , так как она использует только половину входного сигнала (половину периода).

Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов

Добавочные сопротивления Rд величиной от единиц до десятков Ом включаются с целью выравнивания токов в каждой из ветвей.

Если напряжение в цепи превосходит максимально допустимое обратное напряжение диода, то в этом случае допускается последовательное включение диодов

Шунтирующие сопротивления величиной несколько сот кОм включают для выравнивания падения напряжения на каждом из диодов.

Однополупериодный выпрямитель неэффективен, так как мы теряем половину напряжения за период, соответственно выходное напряжение в два раза меньше.

Для устранения этого недостатка используют двухполупериодный выпрямитель:

В течение положительного полупериода напряжения Ua (+) диоды VD1 и VD4 открыты, а VD2 и VD3 – закрыты. Ток будет протекать по пути: верхняя ветвь (+), диод VD1, нагрузка, диод VD4, нижняя ветвь (-).

В течение отрицательного полупериода напряжения Ua диоды VD1 и VD4 закрываются, а диоды VD2 и VD3 открываются. Ток будет протекать от (+), нижняя ветвь, диод VD3, нагрузка, диод VD2, верхняя ветвь (-).

Поэтому ток через нагрузку будет протекать в одном и том же направлении за оба полупериода. Схема выпрямителя называется двухполупериодной.

Выпрямленные диодным мотом (двухполупериодной схемой) сигналы, еще не могут быть использованы как сигналы постоянного тока. Дело в том, что их можно считать сигналами постоянного тока только в том отношении, что они не изменяют свою полярность. На самом деле в них присутствует большое количество «пульсаций» (периодических колебаний напряжения относительно постоянного значения), которые необходимо сгладить для того, чтобы получить настоящее напряжение постоянного тока. Для этого схему выпрямителя нужно дополнить фильтром низких частот.

Резистор R в приведенной выше схеме исп. Не обязательно, так как диодный мост имеет определенное выходное сопротивление.

Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рисунке ниже. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.730-73

ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В СХЕМАХ.
ПРИБОРЫ
ПОЛУПРОВОДНИКОВЫЕ

Unified system for design documentation.
Graphical symbols in diagrams.
Semiconductor devices

ГОСТ
2.730-73

Дата введения 1974-07-01

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности. (Измененная редакция, Изм. № 3). 2. Обозначения элементов полупроводниковых приборов приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. (Исключен, Изм. № 2).
2. Электроды:
база с одним выводом
база с двумя выводами

Р -эмиттер с N -областью

N -эмиттер с Р -областью
несколько Р -эмиттеров с N -областью
несколько N -эмиттеров с Р -областью
коллектор с базой
несколько коллекторов, например, четыре коллектора на базе
3. Области: область между проводниковыми слоями с различной электропроводностью. Переход от Р -области к N -области и наоборот
область собственной электропроводности ( I -область): l) между областями с электропроводностью разного типа PIN или NIP
2) между областями с электропроводностью одного типа PIP или NIN
3) между коллектором и областью с противоположной электропроводностью PIN или NIP
4) между коллектором и областью с электропроводностью того же типа PIP или NIN
4. Канал проводимости для полевых транзисторов: обогащенного типа
обедненного типа
5. Переход PN
6. Переход NP
7. Р -канал на подложке N -типа, обогащенный тип
8. N -канал на подложке Р -типа, обедненный тип
9. Затвор изолированный
10. Исток и сток Примечание. Линия истока должна быть изображена на продолжении линии затвора, например:

11. Выводы полупроводниковых приборов:
электрически, не соединенные с корпусом

электрически соединенные с корпусом

12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку

(Измененная редакция, Изм. № 2, 3). 3, 4. (Исключены, Изм. № 1). 5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Таблица 4

Наименование

Обозначение

1. Эффект туннельный
а) прямой
б) обращенный
2. Эффект лавинного пробоя: а) односторонний
б) двухсторонний 3-8. (Исключены, Изм. № 2).
9. Эффект Шоттки
6. Примеры построения обозначений полупроводниковых диодов приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Диод
Общее обозначение
2. Диод туннельный
3. Диод обращенный
4. Стабилитрон (диод лавинный выпрямительный)
а) односторонний
б) двухсторонний
5. Диод теплоэлектрический
6. Варикап (диод емкостный)

7. Диод двунаправленный

8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами
8a. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами
9. Диод Шотки
10. Диод светоизлучающий
7. Обозначения тиристоров приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Тиристор диодный, запираемый в обратном направлении
2. Тиристор диодный, проводящий в обратном направлении
3. Тиристор диодный симметричный

4. Тиристор триодный. Общее обозначение
5. Тиристор триодный, запираемый в обратном направлении с управлением: по аноду
по катоду

6. Тиристор триодный выключаемый: общее обозначение
запираемый в обратном направлении, с управлением по аноду
запираемый в обратном направлении, с управлением по катоду
7. Тиристор триодный, проводящий в обратном направлении:
общее обозначение
с управлением по аноду
с управлением по катоду
8. Тиристор триодный симметричный (двунаправленный) - триак

9. Тиристор тетроидный, запираемый в обратном направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника. 8. Примеры построения обозначений транзисторов с Р- N -переходами приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Транзистор а) типа PNP б) типа NPN с выводом от внутреннего экрана 2. Транзистор типа NPN , коллектор соединен с корпусом 3. Транзистор лавинный типа NPN 4. Транзистор однопереходный с N -базой 5. Транзистор однопереходный с Р -базой 6. Транзистор двухбазовый типа NPN 7. Транзистор двухбазовый типа P NIP с выводом от i-области 8. Транзистор двухразовый типа P NIN с выводом от I -области 9. Транзистор многоэмиттерный типа NPN Примечание. При выполнении схем допускается: а) выполнять обозначения транзисторов в зеркальном изображении, например,

Б) изображать корпус транзистора.

Таблица 8

Наименование

Обозначение

1. Транзистор полевой с каналом типа N
2. Транзистор полевой с каналом типа Р
3. Транзистор полевой с изолированным затвором баз вывода от подложки:
а) обогащенного типа с Р -каналом
б) обогащенного типа с N -каналом
в) обедненного типа с Р -каналом
г) обедненного типа с N -каналом
4. Транзистор полевой с изолированным затвором обогащенного типа с N -каналом, с внутренним соединением истока и подложки
5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р -каналом
6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р -каналом с выводом от подложки
7. Транзистор полевой с затвором Шоттки
8. Транзистор полевой с двумя затворами Шоттки
Примечание. Допускается изображать корпус транзисторов. 10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Фоторезистор: а) общее обозначение
б) дифференциальный
2. Фотодиод
З. Фототиристор
4. Фототранзистор:
а) типа PNP
б) типа NPN
5. Фотоэлемент
6. Фотобатарея

Таблица 10

Наименование

Обозначение

1. Оптрон диодный

2. Оптрон тиристорный

3. Оптрон резисторный

4. Прибор оптоэлектронный с фотодиодом и усилителем:
а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором: а) с выводом от базы

б) без вывода от базы

Примечания: 1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по ГОСТ 2.721-74, например:

2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:

12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл. 11.

Таблица 11

Наименование

Обозначение

1. Датчик Холла

Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника
2. Резистор магниточувствительный

3. Магнитный разветвитель

Электрическая схема - это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы - условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов - замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта - замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:

Диоды - простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (p-n-переход). Как известно, основное свойство p-n-перехода - односторонняя проводимость: от области p (анод) к области n (катод). Это наглядно передает и условное графическое обозначение полупроводникового диода: треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 1).

Рис.1. Условное обозначение диодов

Буквенный код диодов - VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы (см. рис. 1, VD4). Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 2, VD1). Полярность выпрямленного моста напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 2, VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.

Рис.2. Условное обозначение диодных мостов

На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 3, VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения обозначения стабилитрона на схеме (VD2-VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).

Рис.3. Условное обозначение стабилитронов, варикапов, диодов Шотки

Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки - полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 3, VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в обозначении диода Шотки (VD10) - в разные стороны; в обозначении обращенного диода (VD9) - оба штриха касаются катода своей серединой.

Свойство обратно смещенного p-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах - варикапах (от слов vari(able) - переменный и cap(acitor) - конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 3, VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 3 показано обозначение матрицы из двух варикапов (VD1).

Базовый символ диода использован и в обозначении тиристоров (от греческого thyra - дверь и английского resistor - резистор) - полупроводниковых приборов с тремя p-n-переходами (структура р-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов - VS.

Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 4, VS1). Такой же прием использован и при построении обозначения симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами . Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду - линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4). Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.4, VS5).

Рис.4. Условное обозначение динисторов, тринисторов

Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева вверху, независимо от положения) помещают знак фотоэлектрического эффекта - две наклонные параллельные стрелки, направленные в сторону символа (рис. 5, VD1-VD3). Подобным образом строятся обозначения любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 5 в качестве примера показано условное графическое обозначение фотодинистора VD4.

Рис.5. Условное обозначение фотодиодов

Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону (рис. 6). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.

Рис.6. Условное обозначение светодиодов и светодиодных индикаторов

Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 6, где изображено обозначение семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита но часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов - HG.

Светоизлучающие кристаллы широко используют в оптронах - специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.

Рис.7. Условное обозначение оптронов

Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи - выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7, U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7, U4.1,U4.2).